Permutation Tableaux and the Dashed Permutation Pattern 32-1

نویسندگان

  • William Y. C. Chen
  • Lewis H. Liu
چکیده

We give a solution to a problem posed by Corteel and Nadeau concerning permutation tableaux of length n and the number of occurrences of the dashed pattern 32–1 in permutations on [n]. We introduce the inversion number of a permutation tableau. For a permutation tableau T and the permutation π obtained from T by the bijection of Corteel and Nadeau, we show that the inversion number of T equals the number of occurrences of the dashed pattern 32–1 in the reverse complement of π. We also show that permutation tableaux without inversions coincide with L-Bell tableaux introduced by Corteel and Nadeau.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Properties of Permutation Tableaux

Abstract. We give another construction of a permutation tableau from its corresponding permutation and construct a permutation-preserving bijection between 1-hinge and 0-hinge tableaux. We also consider certain alignment and crossing statistics on permutation tableaux that are known to be equidistributed via a complicated map to permutations that translates those to occurrences of certain patte...

متن کامل

Linked Partitions and Permutation Tableaux

Linked partitions were introduced by Dykema in the study of transforms in free probability theory, whereas permutation tableaux were introduced by Steingŕımsson and Williams in the study of totally positive Grassmannian cells. Let [n] = {1, 2, . . . , n}. Let L(n, k) denote the set of linked partitions of [n] with k blocks, let P (n, k) denote the set of permutations of [n] with k descents, and...

متن کامل

On Some Properties of Permutation Tableaux

We consider the relation between various permutation statistics and properties of permutation tableaux. We answer some of the open problems of Steingŕımsson and Williams [8], in particular, on the distribution of the bistatistic of numbers of rows and essential ones in permutation tableaux. We also consider and enumerate sets of permutation tableaux related to some pattern restrictions on permu...

متن کامل

Permutation tableaux and permutation patterns

Lauren Williams (joint work with Einar Steingrímsson) We introduce and study a class of tableaux which we call permutation tableaux; these tableaux are naturally in bijection with permutations, and they are a distinguished subset of the " Le-diagrams " of Alex Postnikov. The structure of these tableaux is in some ways more transparent than the structure of permutations; therefore we believe tha...

متن کامل

Permutation Tableaux and the Asymmetric Exclusion Process

The partially asymmetric exclusion process (PASEP) is an important model from statistical mechanics which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites. It is partially asymmetric in the sense that the probability of hopping left is q times the probability of hopping right. In this paper we prove a close connection between the PASEP m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011